## “When is the best time to stop?” at noon on Monday 3/25 in Olin 268

Student Colloquium talk by Professor Ryan Hynd, University of Pennsylvania

Title: When is the best time to stop?

Abstract:Suppose that you are observing a sequence of events, and need to decide when to stop. Your goal could be to maximize an expected gain or give yourself a good chance to make the best choice possible.  We will discuss several instances of this type of problem and talk about ways to use math to solve them.

## “Mathematics of Outbreaks: Exploring Infectious Disease Transmission and Control with Mathematical Models” at noon on Thursday 3/21 in Olin 268

Student Colloquium talk by Professor Michael A. Robert, University of the Sciences

Title: Mathematics of Outbreaks: Exploring Infectious Disease Transmission and Control with Mathematical Models

Abstract: Mathematical models have long been used to study the spread of infectious diseases. From smallpox to influenza to Zika virus, mathematical models help us understand how infectious diseases spread and how we can potentially control their spread. Models are also powerful tools for making predictions about how infectious diseases may emerge and spread in the future. In this talk, I will introduce mathematical models developed to study infectious diseases, and I will discuss my recent work in using mathematical models to study the spread and control of dengue fever and Zika virus, two diseases transmitted by mosquitoes. Dengue fever is found throughout tropical regions of the world and impacts millions of people each year. In recent years, dengue has begun to spread into more temperate areas of the world. Zika virus first emerged in 2015 and spread rapidly throughout the world, infecting millions of people. The recent rapid spread of both viruses is the result of a number of factors including an increasingly connected world and a rise in global surface temperatures caused by climate change. I will discuss how I utilize mathematical models to understand how these two factors play a role in transmission of dengue and Zika. I will specifically discuss how human movement and temperature variation impact the potential for the spread of dengue and Zika in certain U.S. cities and how the potential for emergence of the viruses may change if global surface temperatures continue to rise. I will also briefly discuss how models are being used to plan control strategies for infectious diseases, including strategies involving the release of genetically modified mosquitoes to help control mosquito-borne diseases.

## 46th John Steiner Gold Mathematical Competition on March 13, 2019

On March 13, Bucknell will host the 46th Professor John Steiner Gold Mathematical Competition. The competition is open to all area high schools, public and private. Each school may enter up to three students, who will compete for both team and individual prizes. Please see the link below for more details about this year’s competition.

Best of luck to all participants!

John Steiner Gold Exam Announcement